

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

CSC6052/5051/4100/DDA6307/ MDS5110 Natural Language Processing Lecture 4-2: Transformer and beyond.

Spring 2025 Benyou Wang School of Data Science To recap...

Last lecture

- MLP
 - +: Strongest inductive bias: if all words are concatenated
 - +: Weakest inductive bias: if all words are averaged
 - : The interaction at the token-level is too weak
- CNN & RNN
 - +: The interaction at the token-level is slightly better.
 - CNN: Bringing the global token-level interaction to the window-level
 - : Make simplifications, its global dependencies are limited RNN: An ideal method for processing token sequences
 - : Its recursive nature has the problem of disaster forgetting.
- Transformer

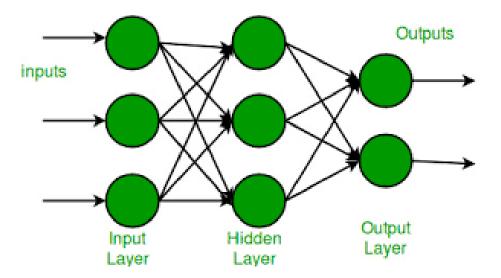
+: Achieve **global dependence** at the **token-level** by **decoupling** token-level interaction and feature-level abstraction into two components, in **SAN** and **FNN**.

Multilayer Perceptron (MLP)

Definition: The Multilayer Perceptron (MLP) is a type of artificial neural network (ANN) that consists of multiple layers of interconnected artificial neurons or perceptrons.

A **perceptron** can be seen as a single neuron (one output unit with a vector or **layer** of input units):

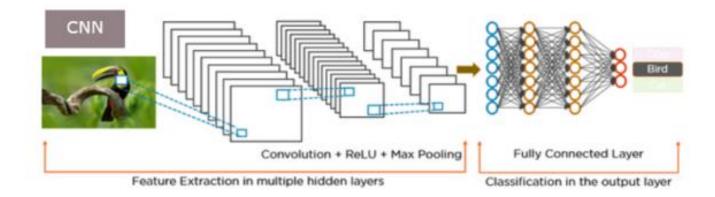
Output unit: scalar $y = f(\mathbf{x})$ Input layer: vector \mathbf{x}



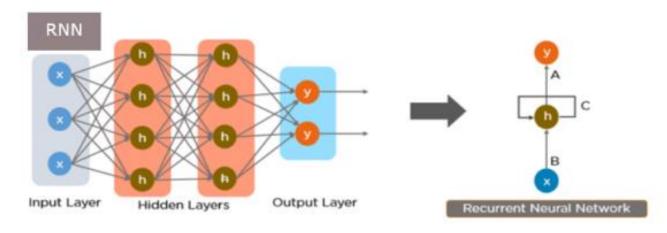
CNN&RNN

- Convolutional Neural Network (CNN)
- Recurrent Neural Network (RNN)

Convolutional Neural Network

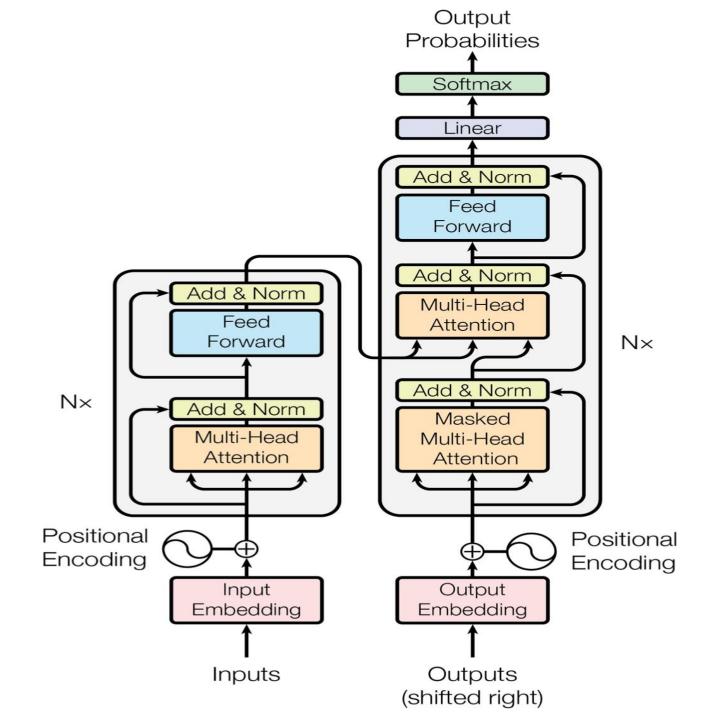


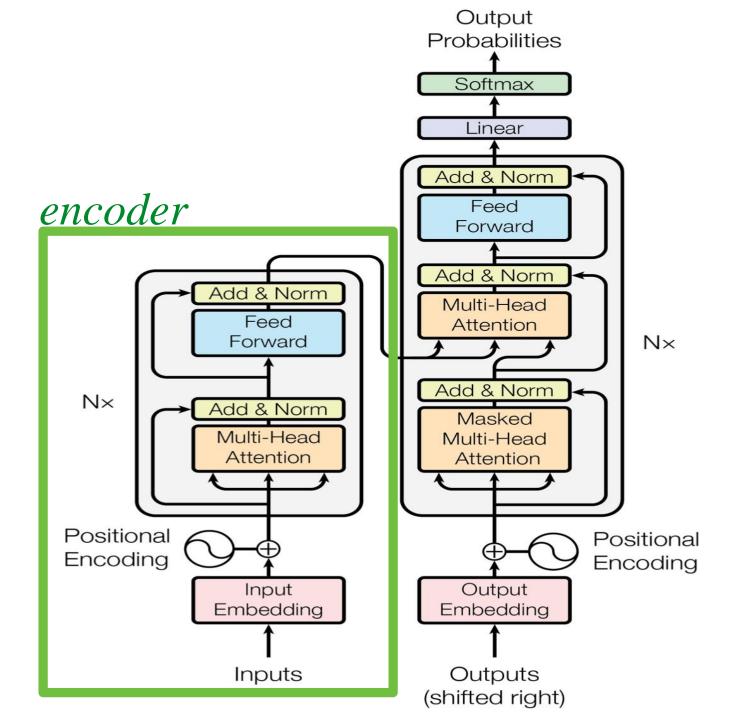
Recurrent Neural Network

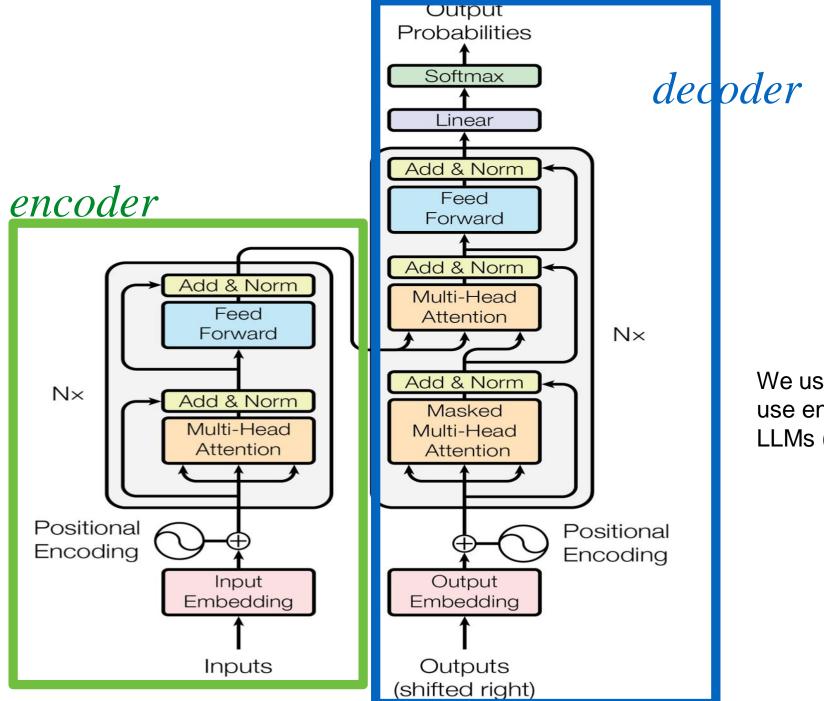


Today's Lecture: Transformer

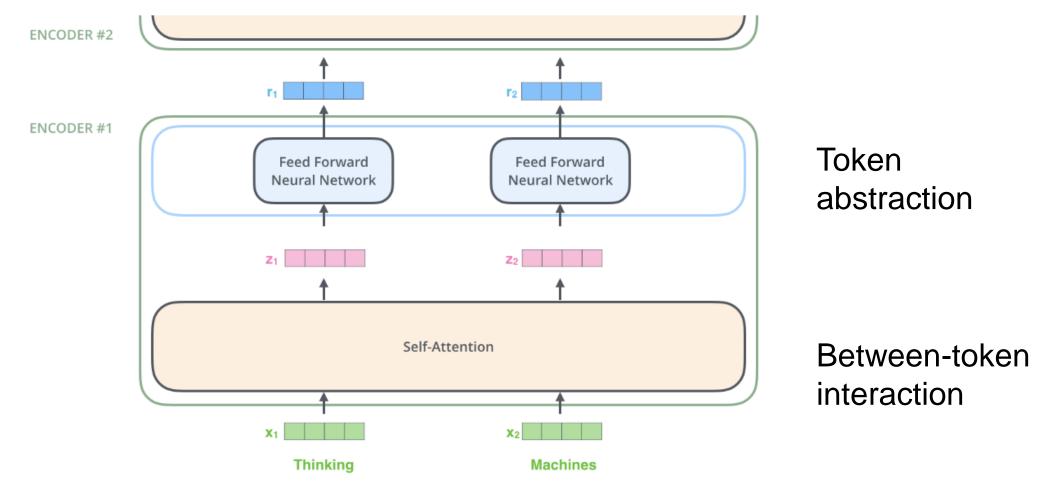
- Encoder
- Decoder
- Self-attention
- Multi-head self-attention
- Positional Encoding





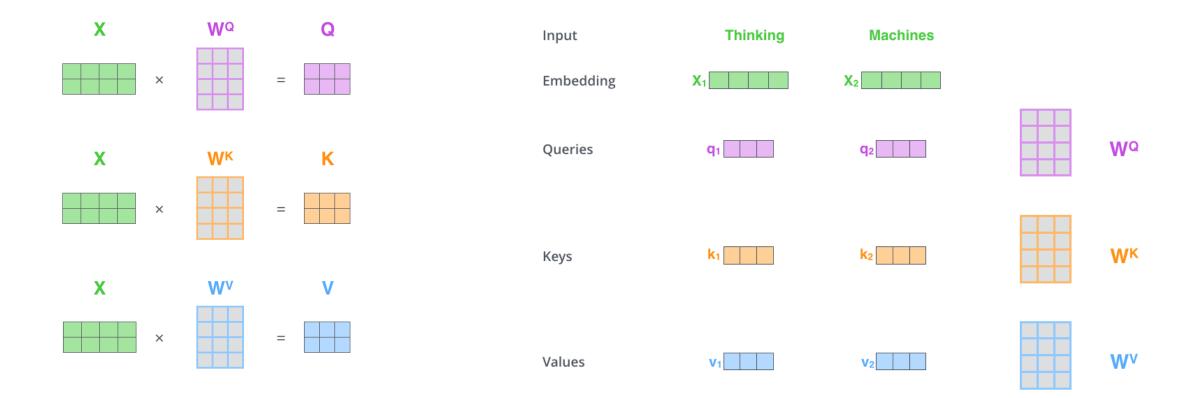


We usually do not use encoder in LLMs (decoder-only)

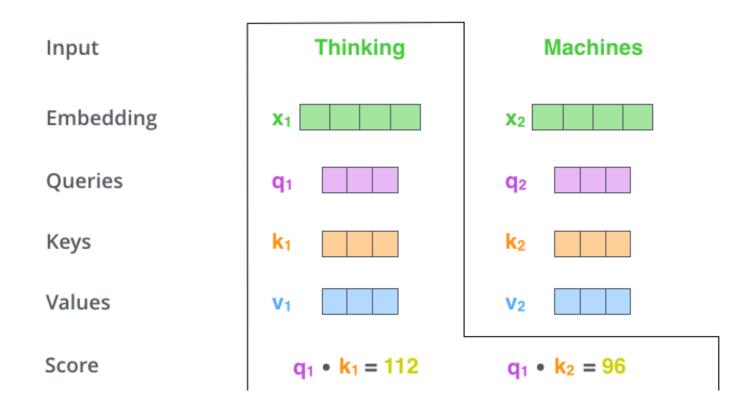


The word at each position passes through a self-attention process. Then, they each pass through a feed-forward neural network -- the exact same network with each vector flowing through it separately.

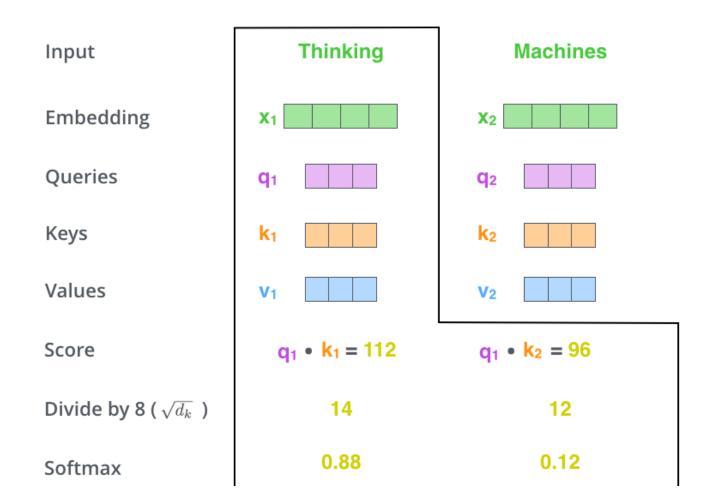
https://jalammar.github.io/illustrated-transformer/



Multi-faced token representation (QKV)

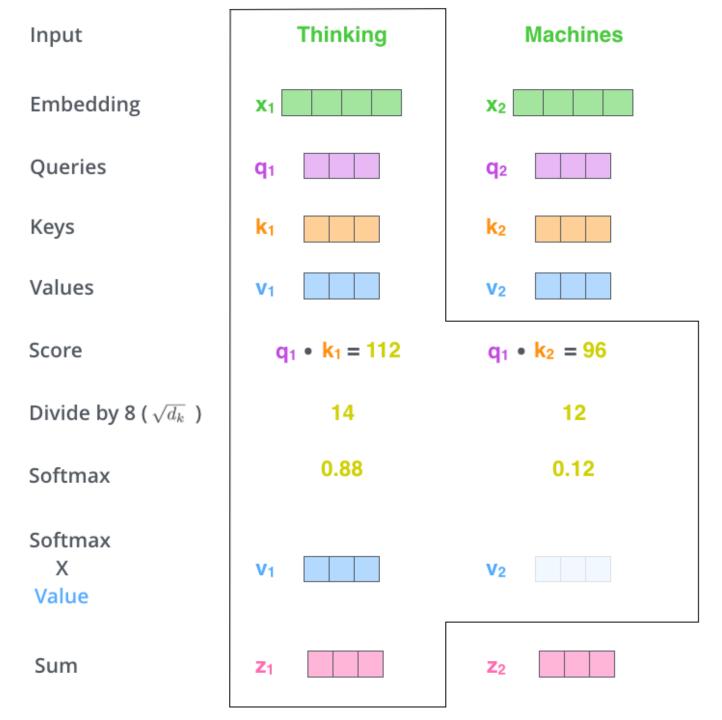


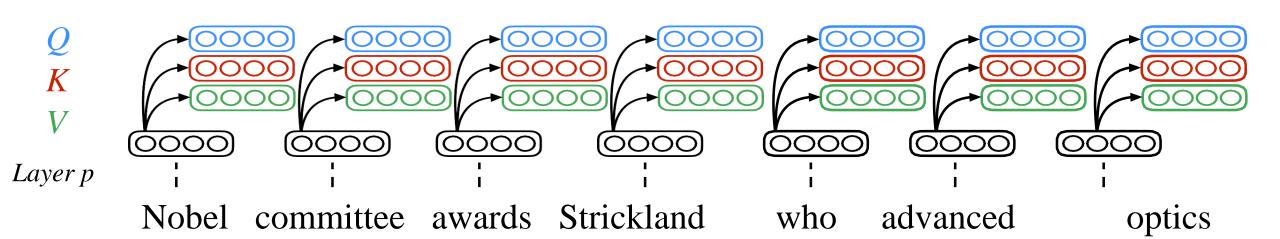
Key-value interaction between tokens

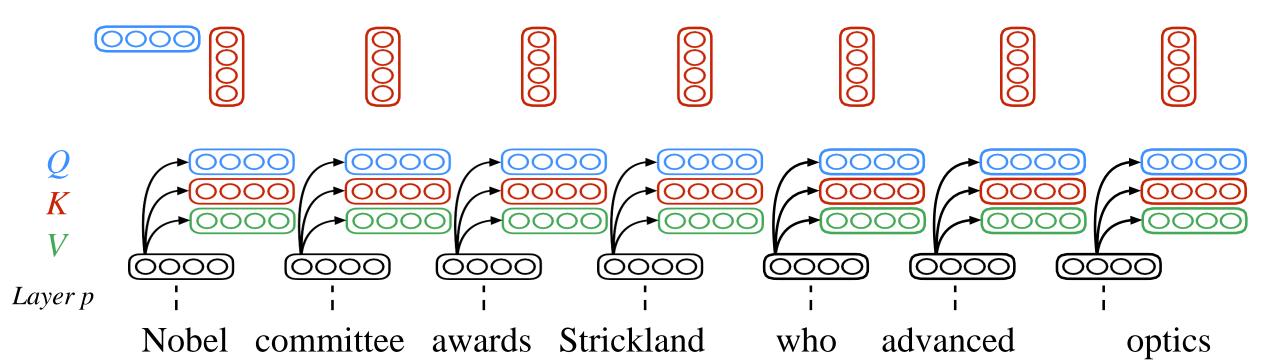


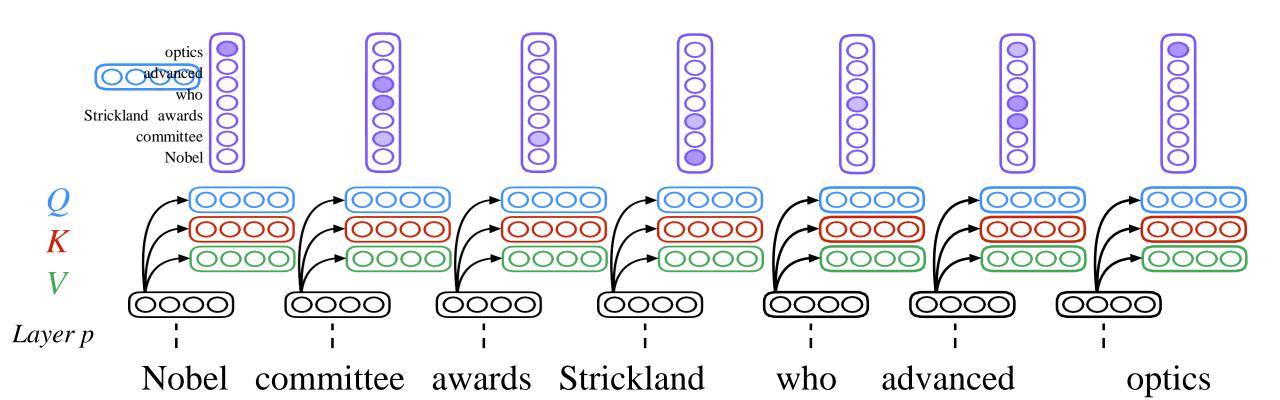
Normalize the Key-value interaction as attention (a probability distribution)

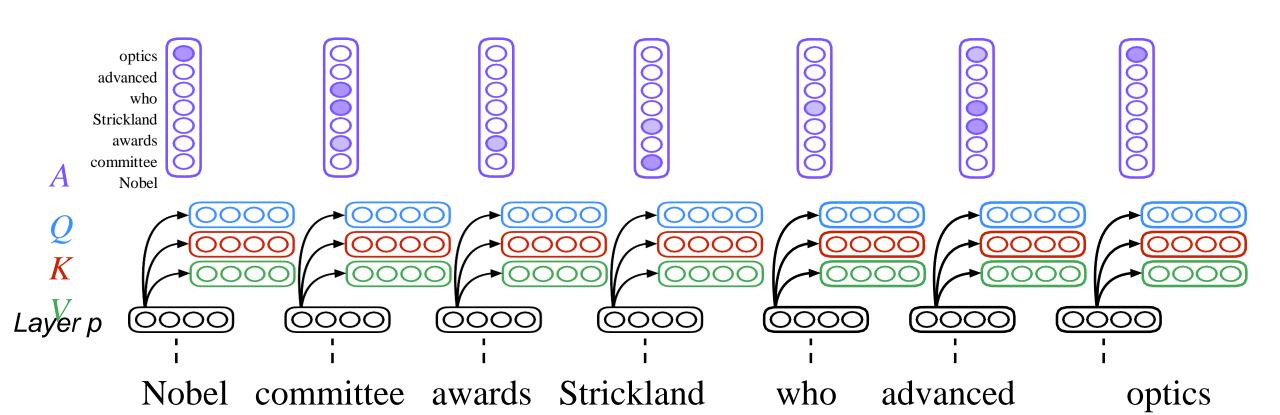
p.s. why softmax makes a probability distribution?

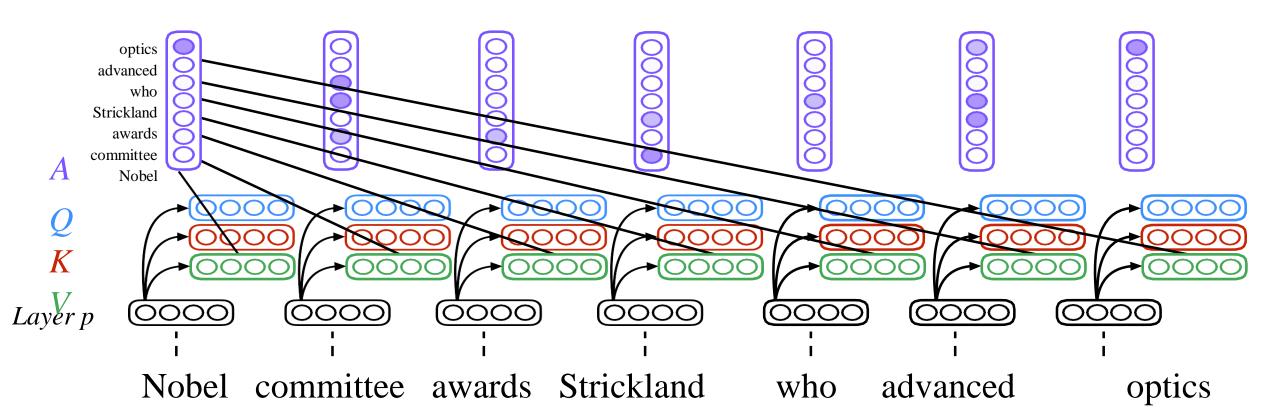


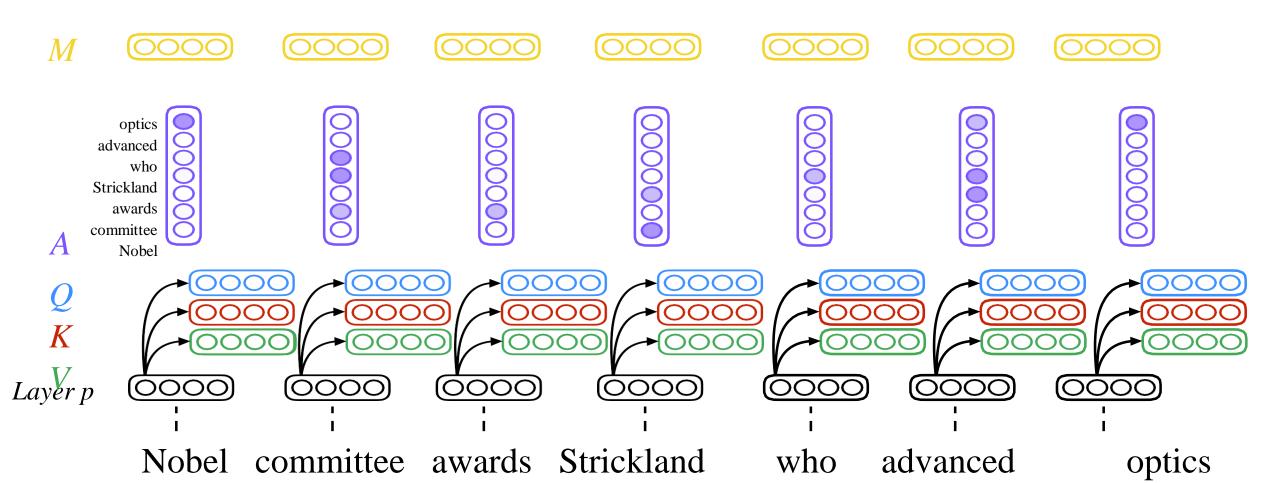




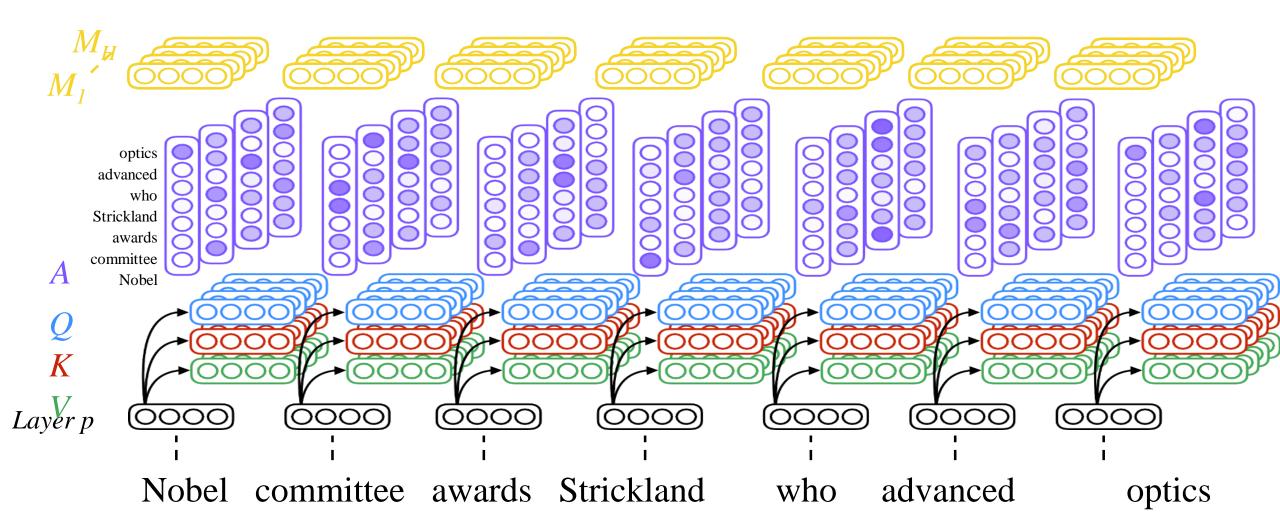




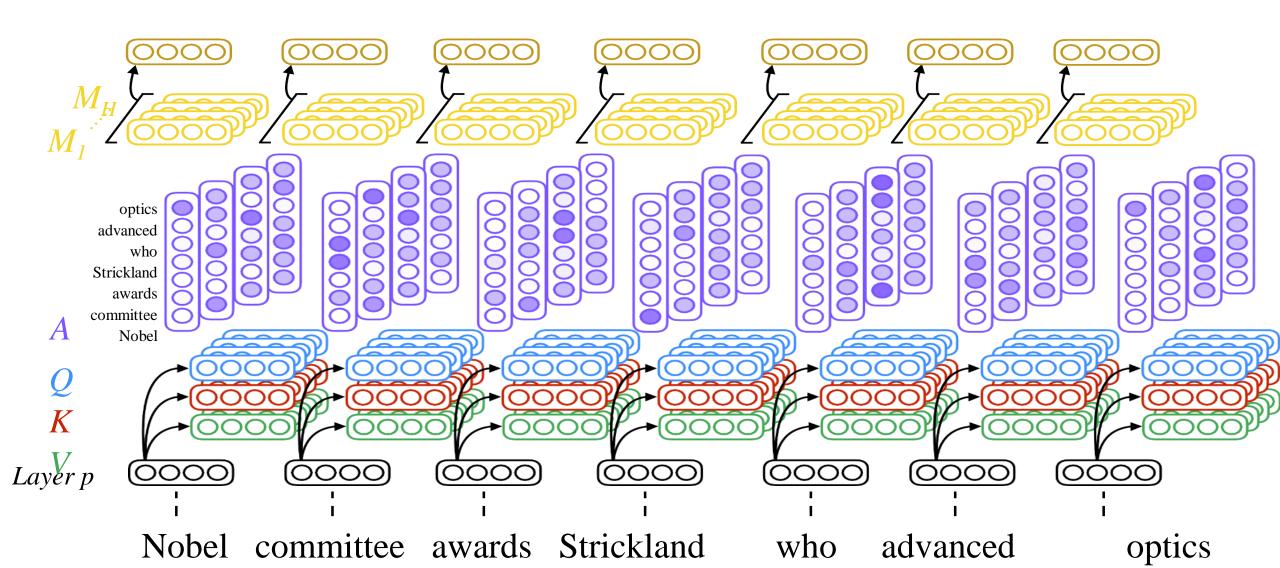


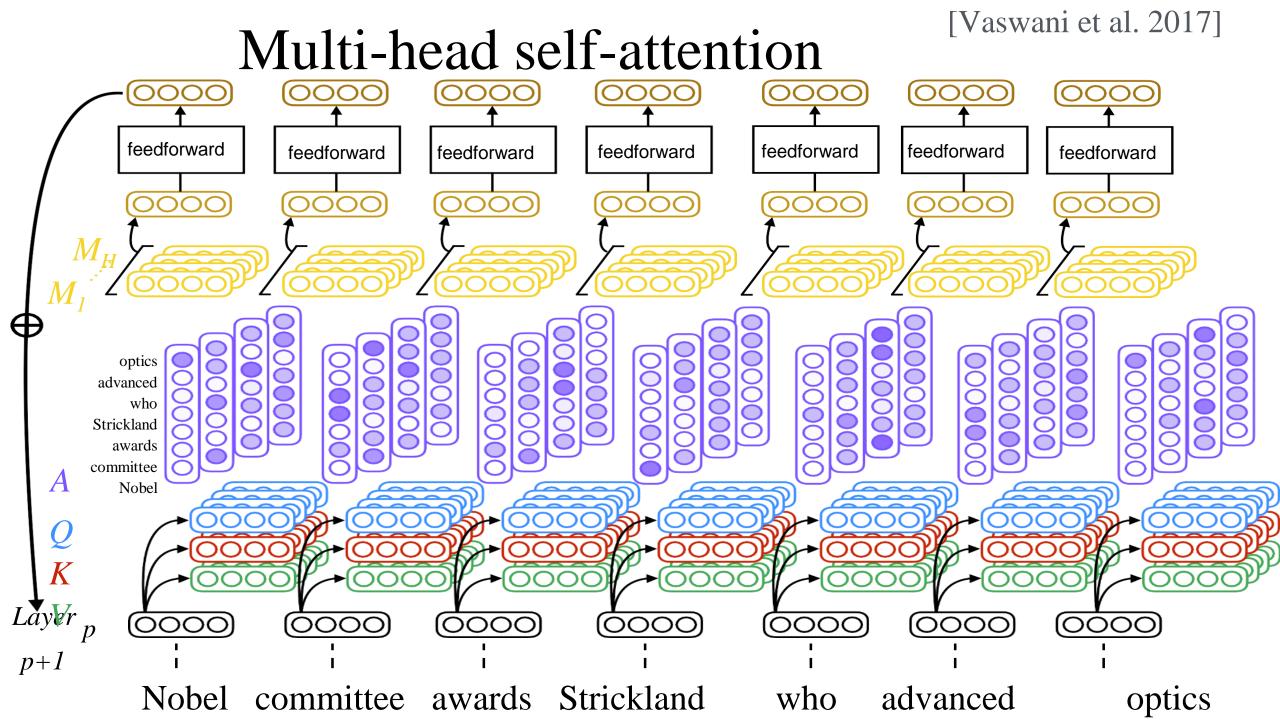


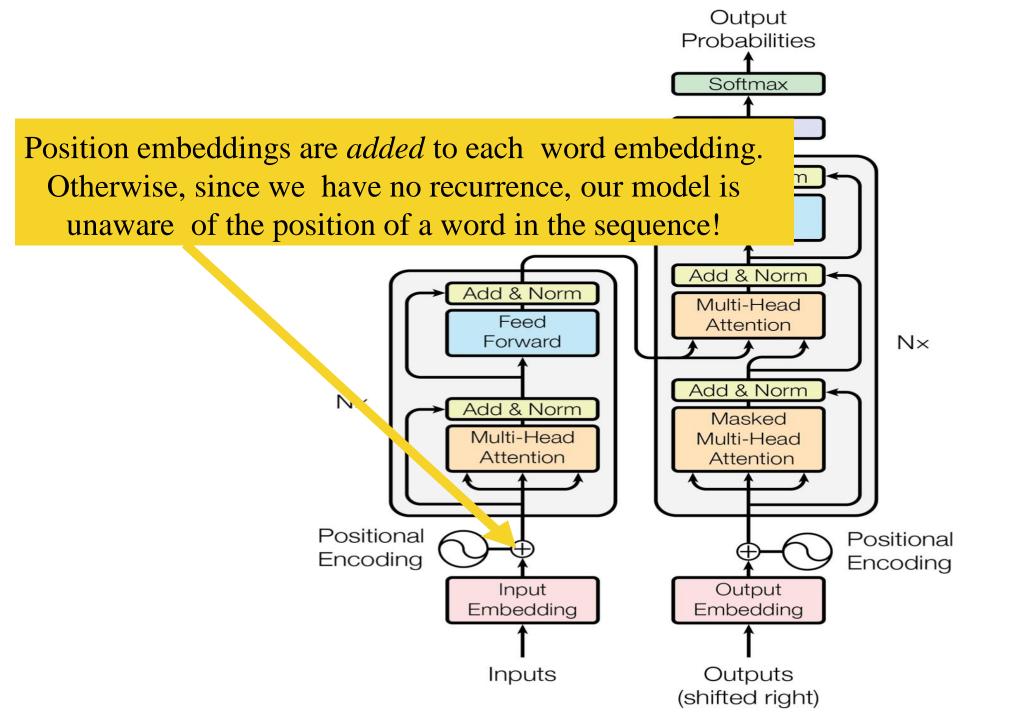
Multi-head self-attention

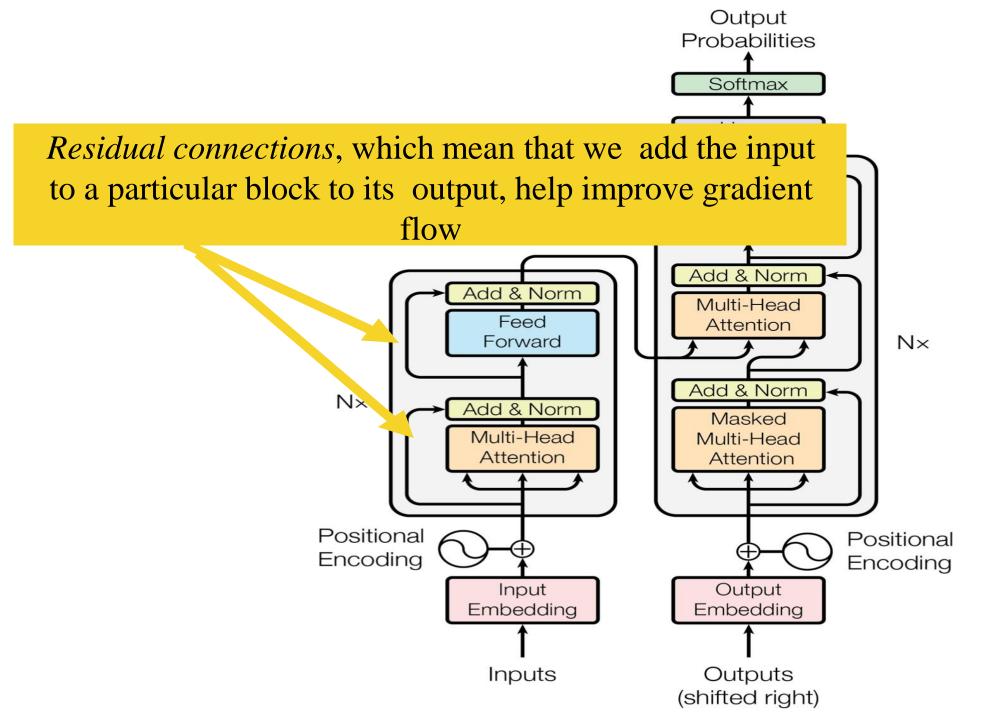


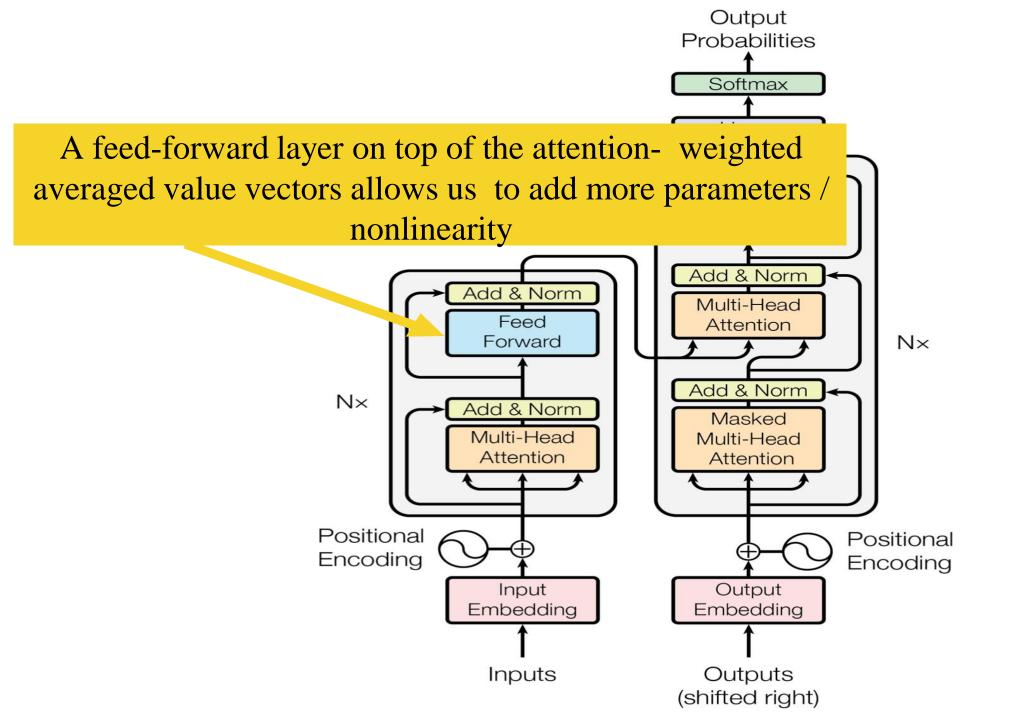
Multi-head self-attention

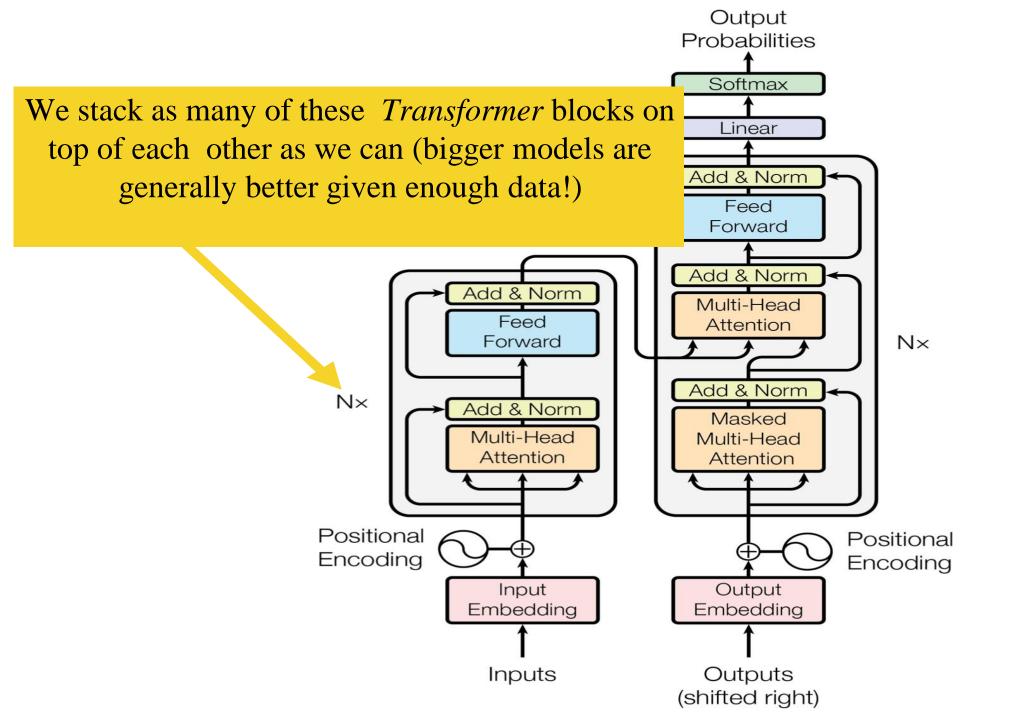


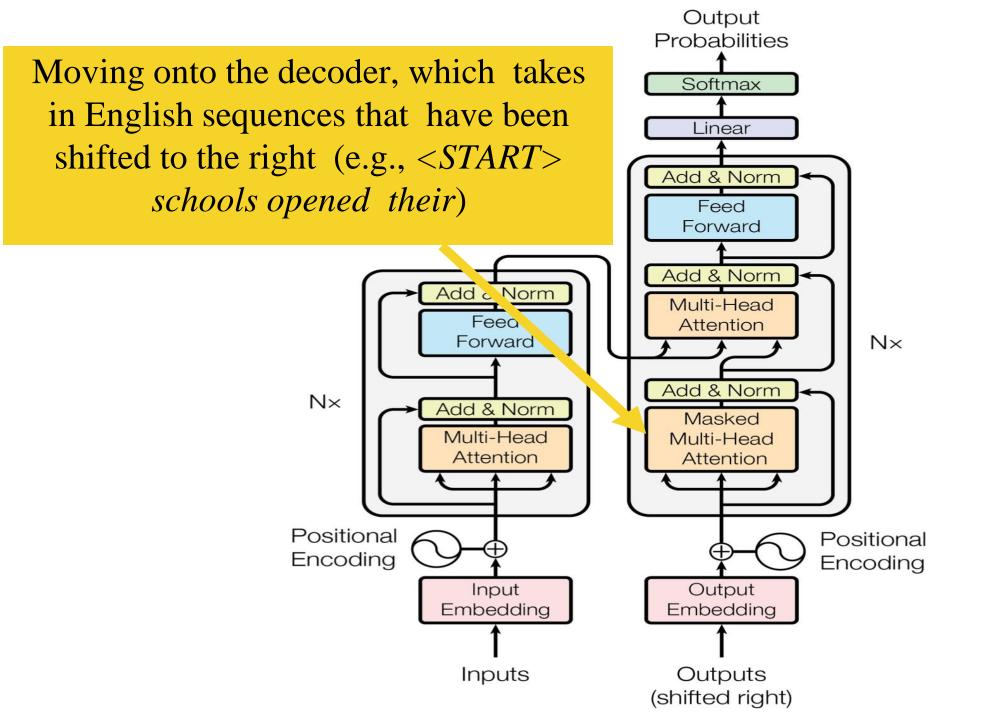


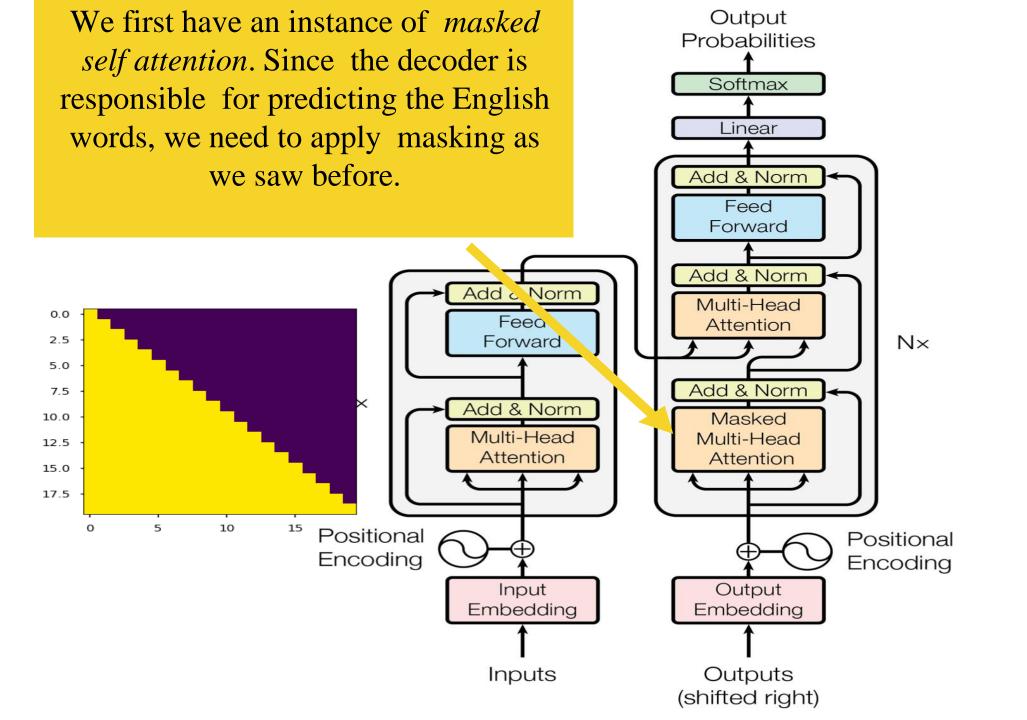


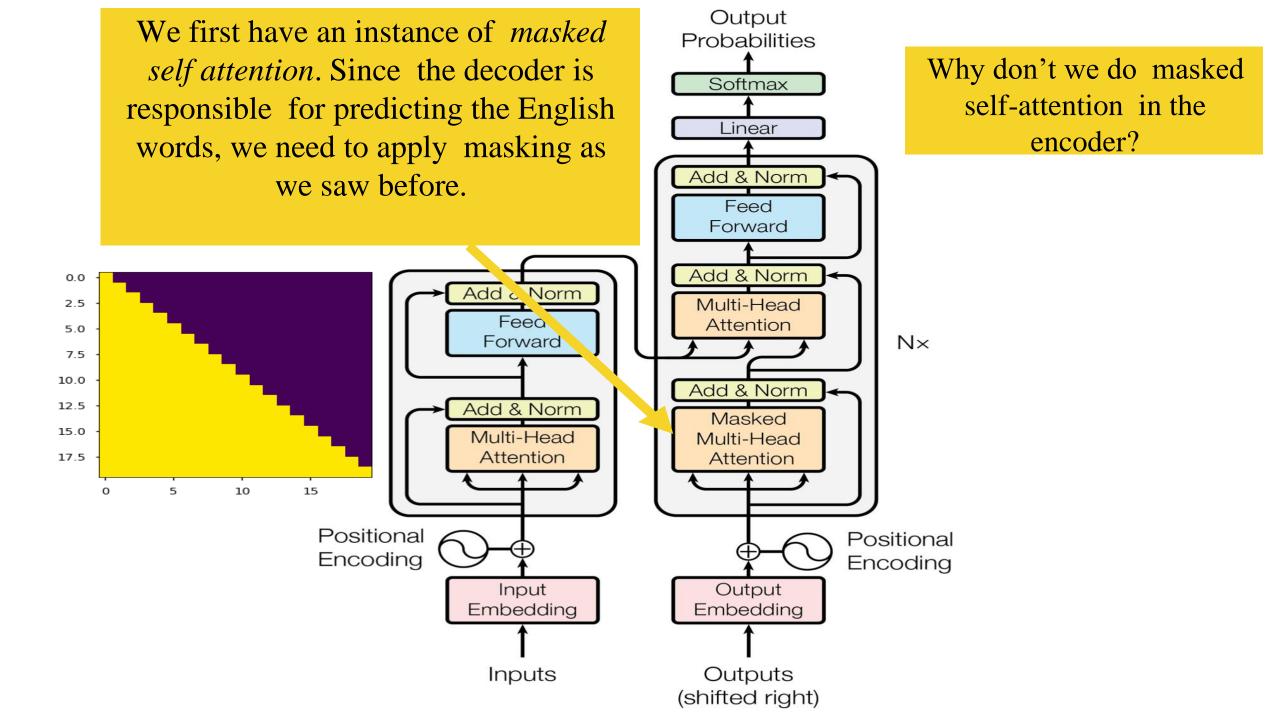




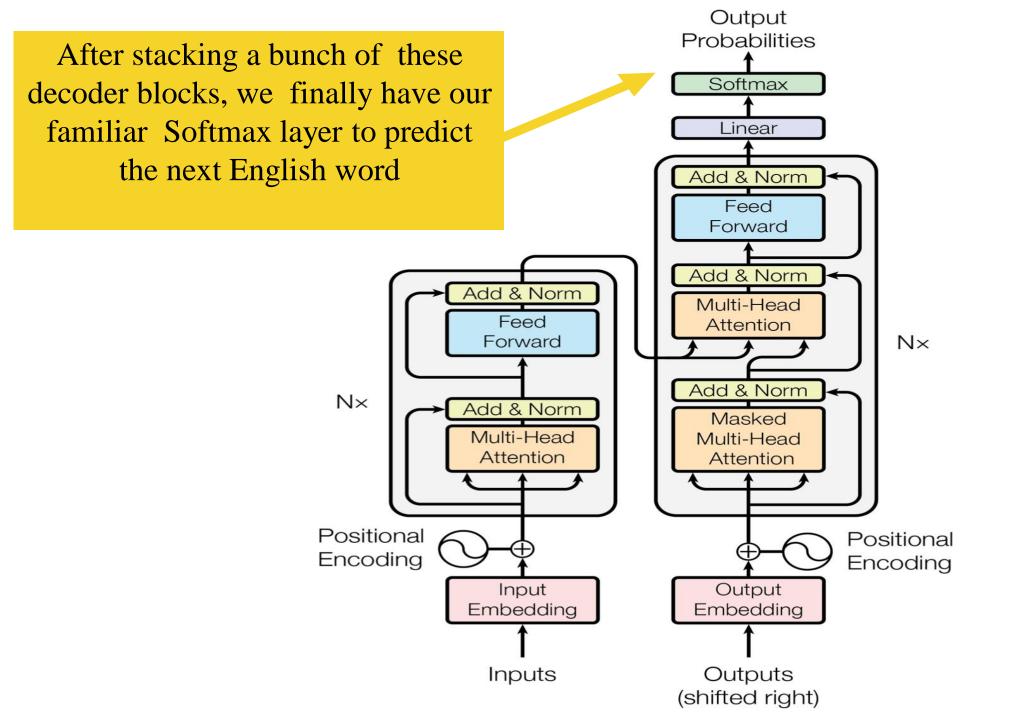




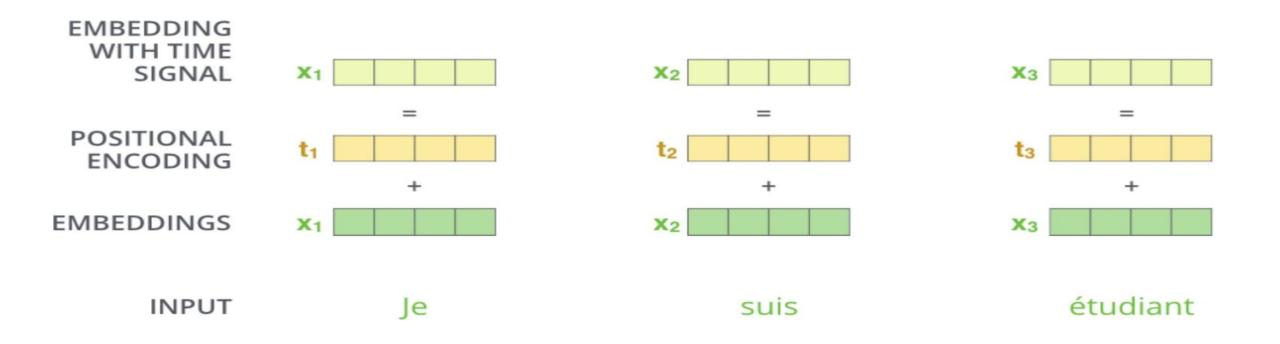




Output **Probabilities** Now, we have *cross attention*, which Softmax connects the decoder to the encoder by Linear enabling it to attend over the encoder's final hidden states. Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention Forward N× Add & Norm N× Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional Encoding Encoding Input Output Embedding Embedding Inputs Outputs (shifted right)



Positional encoding



Transformer positional encoding (pre-defined) without need of training

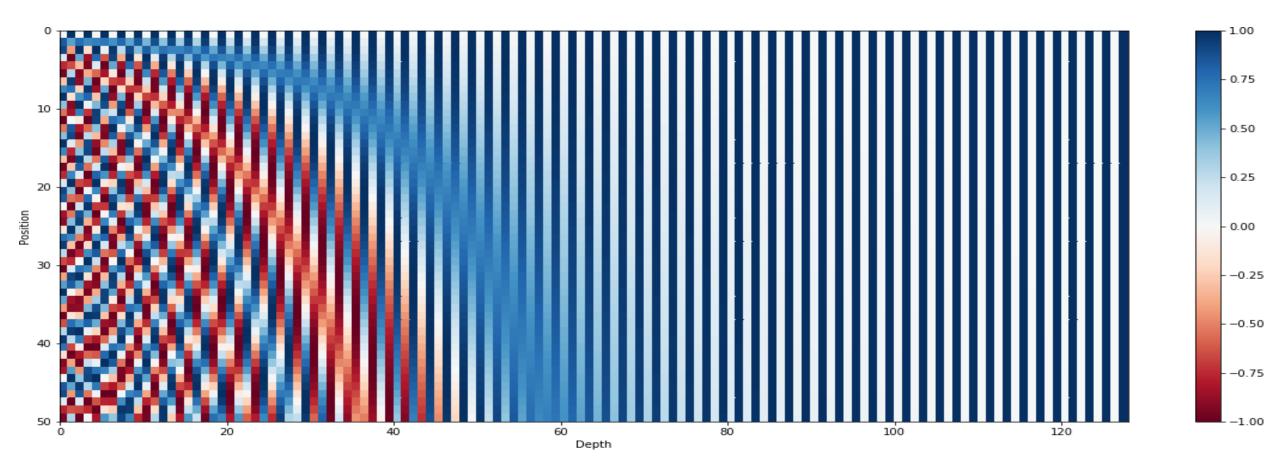
$$PE_{(pos,2i)} = \sin(rac{pos}{10000^{2i/d_{model}}})
onumber \ PE_{(pos,2i+1)} = \cos(rac{pos}{10000^{2i/d_{model}}})$$

Positional encoding is a 512d vector i = a particular dimension of this vector pos = dimension of the word $d_model = 512$

One could also user absolute/relative position embedding that is trainable

What does this look like?

(each row is the pos. emb. of a 50-word sentence)



https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Intuitive explanation

0:	O O O O	8:	1 O O O
1:	O O O 1	9:	1 O 0 1
2:	O O 1 O	10:	1 O 1 O
3:	O O 1 1	11:	1 O 1 1
4 :	0 1 0 0	12:	1 1 0 0
5:	0 1 0 1	13:	1 1 0 1
6 :	0 1 1 0	14:	1 1 1 0
7:	0111	15:	1 1 1 1

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

On position embedding in BERT

Table 3: Experiments on GLUE. The evaluation metrics are following the official GLUE benchmark (Wang et al., 2018). The best performance of each task is bold.

	single sentence			sentence pair						
PEs	CoLA	SST-2	MNLI	MRPC	QNLI	QQP	RTE	STS-B	WNLI	
	acc	acc	acc	F1	acc	F1	acc	spear. cor.	acc	mean \pm std
BERT without PE	39.0	86.5	80.1	86.2	83.7	86.5	63.0	87.4	33.8	76.6 ± 0.41
fully learnable (BERT-style) APE	60.2	93.0	84.8	89.4	88.7	87.8	65.1	88.6	37.5	82.2 ± 0.30
fixed sin. APE	57.1	92.6	84.3	89.0	88.1	87.5	58.4	86.9	45.1	80.5 ± 0.71
learnable sin. APE	56.0	92.8	84.8	88.7	88.5	87.7	59.1	87.0	40.8	80.6 ± 0.29
fully-learnable RPE	58.9	92.6	84.9	90.5	88.9	88.1	60.8	88.6	50.4	81.7 ± 0.31
fixed sin. RPE	60.4	92.2	84.8	89.5	88.8	88.0	62.9	88.1	45.1	81.8 ± 0.53
learnable sin. RPE	60.3	92.6	85.2	90.3	89.1	88.1	63.5	88.3	49.9	82.2 ± 0.40
fully learnable APE + fully-learnable RPE	59.8	92.8	85.1	89.6	88.6	87.8	62.5	88.3	51.5	81.8 ± 0.17
fully learnable APE + fixed sin. RPE	59.2	92.4	84.8	89.9	88.8	87.9	61.0	88.3	48.2	81.5 ± 0.20
fully learnable APE+ learnable sin. RPE	61.1	92.8	85.2	90.5	89.5	87.9	65.1	88.2	49.6	82.5 ± 0.44
learnable sin. APE + fully-learnable RPE	57.2	92.7	84.8	88.9	88.5	87.8	58.6	88.0	51.3	80.8 ± 0.44
learnable sin. APE + fixed sin. RPE	57.6	92.6	84.5	88.8	88.6	87.6	63.1	87.4	48.7	81.3 ± 0.43
learnable sin. APE + learnable sin. RPE	57.7	92.7	85.0	89.6	88.7	87.8	62.3	87.5	50.1	81.4 ± 0.33

Modern embedding

Rotary embedding

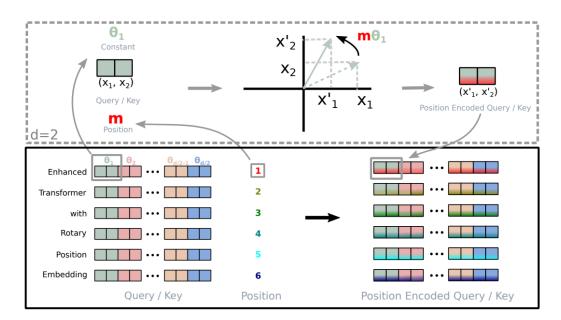


Figure 1: Implementation of Rotary Position Embedding(RoPE).

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, Yunfeng Liu. RoFormer: Enhanced Transformer with Rotary Position Embedding. <u>https://arxiv.org/abs/2104.09864</u>

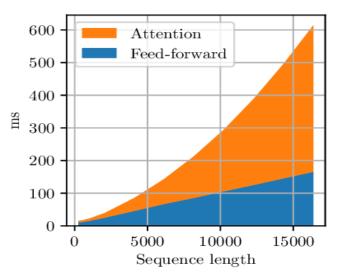
Benyou Wang, Donghao Zhao, Christina Lioma, Qiuchi Li, Peng Zhang, Jakob Grue Simonsen. Encoding word order in complex embeddings. https://arxiv.org/abs/1912.12333

More on new-Transformer

What would we like to fix about the Transformer?

Quadratic compute in self-attention (today):

- Computing all pairs of interactions means our computation grows quadratically with the sequence length!
- For recurrent models, it only grew linearly!



Quadratic computation as a function of sequence length

- One of the benefits of self-attention over recurrence was that it's highly parallelizable.
- However, its total number of operations grows as O(n²d), where n is the sequence length, and d is the dimensionality.

$$XQ = XQK^{\top}X^{\top} = XQK^{\top}X^{\top} \in \mathbb{R}^{n \times n}$$

Need to compute all pairs of interactions!
 $O(n^2d)$

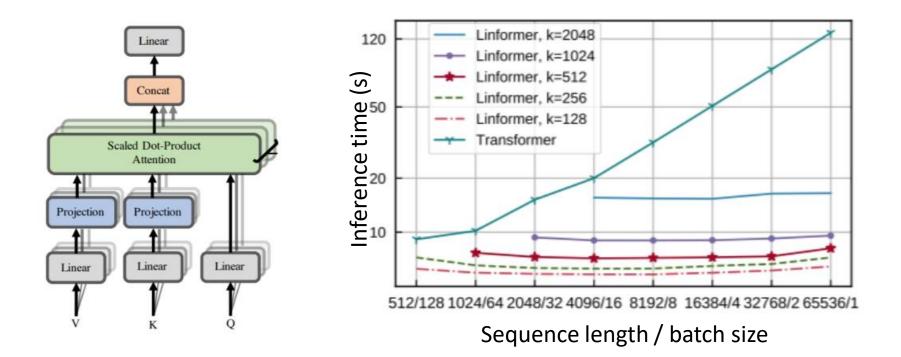
- Think of d as around 1,000 (though for large language models it's much larger!).
 - So, for a single (shortish) sentence, $n \leq 30$; $n^2 \leq 900$.
 - In practice, we set a bound like n = 512.
 - But what if we'd like $n \ge 50,000$? For example, to work on long documents?

Work on improving on quadratic self-attention cost

Considerable recent work has gone into the question, *Can we build models like Transformers without paying the all-pairs self-attention cost?* For example, **Linformer** [Wang et al., 2020]

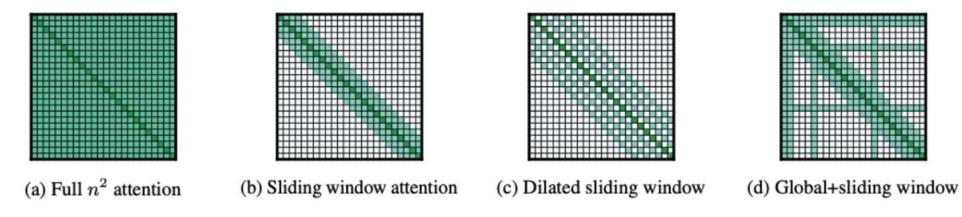
Key Idea:

Linformer introduces a novel concept called "compressed" or "linearized" self-attention.
Instead of computing attention scores for all pairs of input elements, it employs linear projections to reduce the complexity.

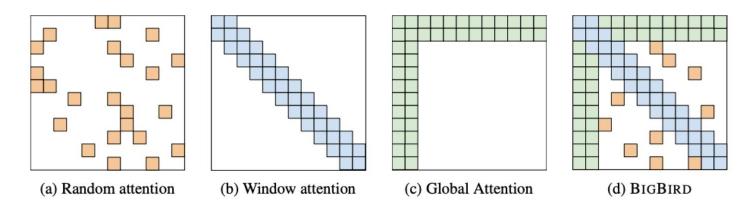


Example: Longformer / Big Bird

Key idea: use sparse attention patterns!



(Beltagy et al., 2020): Longformer: The Long-Document Transformer



(Zaheer et al., 2021): Big Bird: Transformers for Longer

Do we even need to remove the quadratic cost of attention?

- As Transformers Scale Up: When Transformers are scaled to larger sizes, an increasingly significant portion of computational resources is allocated to tasks outside of the self-attention mechanism, despite its quadratic computational cost.
- **Current Practice:** In practice, nearly all large Transformer-based language models continue to rely on the traditional quadratic-cost attention mechanism that has been presented.
- **Challenges with Cost-Efficiency:** Alternative, more computationally efficient methods often do not perform as effectively when applied at a large scale.
- Exploring Cheaper Alternatives: Is there value in exploring cost-efficient alternatives to selfattention, or could we unlock the potential for significantly improved models with much longer contextual information (e.g., >100k tokens) if we find the right approach?

Do Transformer Modifications Transfer?

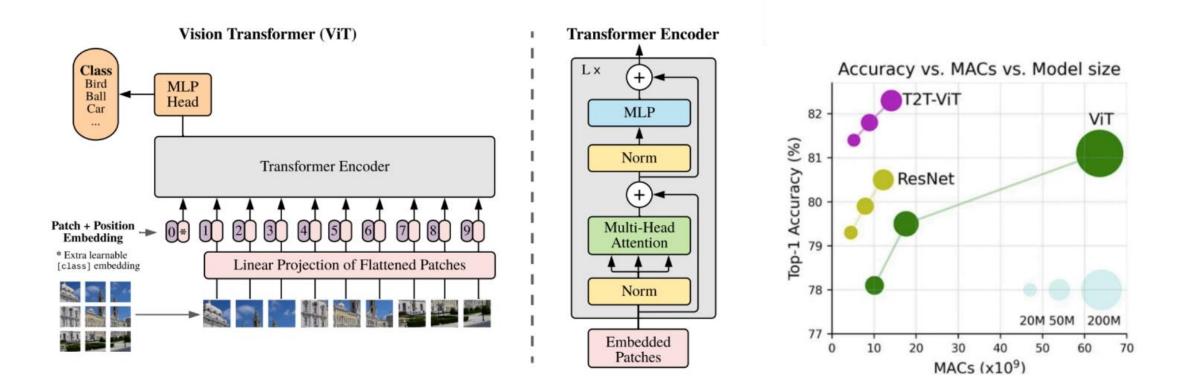
• "Surprisingly, we find that most modifications do not meaningfully improve performance."

Model	Params	Ops	Step/s	Early loss	Final loss	SGLUE	XSum	WebQ	WMT EnDe	
Vanilla Transformer	la Transformer 221M 11.1T		3.50	2.182 ± 0.005	1.838	71.96	17.78	23.02	26.62	
GeLU	223M	11.1T	3.58	2.179 ± 0.003	1.838	75.79	17.86	25.13	26.47	
Swish	223M	11.1T	3.62	2.186 ± 0.003	1.847	73.77	17.74	24.34	26.75	
ELU	223M	11.1T	3.56	2.270 ± 0.007	1.932	67.83	16.73	23.02	26.08	
GLU	223M	11.1T	3.59	2.174 ± 0.003	1.814	74.20	17.42	24.34	27.12	
GeGLU	223M	11.1T	3.55	2.130 ± 0.006	1.792	75.96	18.27	24.87	26.87	
ReGLU	223M	11.1T	3.57	2.145 ± 0.004	1.903	76.17	18.36	24.87	27.02	
SeLU	223M	11.1T	3.55	2.315 ± 0.004	1.948	68.76	16.76	22.75	25.99	
SwiGLU	223M	11.1T	3.58	2.127 ± 0.003	1.789	76.00	18.20	24.34	27.02	
LIGLU	223M	11.1T	3.59	2.149 ± 0.005	1.798	75.34	17.97	24.34	26.53	
Sigmoid	223M	11.1T	3.63	2.291 ± 0.019	1.867	74.31	17.51	23.02	26.30	
Softplus	223M	11.1T	3.47	2.207 ± 0.011	1.850	72.45	17.65	24.34	26.89	
RMS Norm	223M	11.1T	3.68	2.167 ± 0.008	1.821	75.45	17.94	24.07	27.14	
Resero	223M	11.1T	3.51	2.262 ± 0.003	1.939	61.69	15.64	20.90	26.37	
Resero + LayerNorm	223M	11.1T	3.26	2.223 ± 0.006	1.858	70.42	17.58	23.02	26.29	
Resero + RMS Norm	223M	11.1T	3.34	2.221 ± 0.009	1.875	70.33	17.32	23.02	26.19	
Fixup	223M	11.1T	2.95	2.382 ± 0.012	2.067	58.56	14.42	23.02	26.31	
24 layers, dg = 1536, H = 6	224M	11.1T	3.33	2.200 ± 0.007	1.843	74.89	17.75	25.13	26.89	
18 layers, dg = 2048, H = 8	223M	11.1T	3.38	2.185 ± 0.005	1.831	76.45	16.83	24.34	27.10	
8 layers, dg = 4608, H = 18	223M	11.1T	3.69	2.190 ± 0.005	1.847	74.58	17.69	23.28	26.85	
6 layers, dg = 6144, H = 24	223M	11.1T	3.70	2.201 ± 0.010	1.857	73.55	17.59	24.60	26.65	
Block sharing	65M	11.17	3.91	2.497 ± 0.037	2.164	64.50	14.53	21.96	25.48	
+ Factorized embeddings + Factorized k shared em-	45M 20M	9.47	4.21	2.631 ± 0.305	2.183	60.84	14.00	19.84	25.27	
+ Factorized & shared en- beddings	20.01	9.17	4.37	2.907 ± 0.313	2.385	53.95	11.37	19.84	25.19	
Encoder only block sharing	170M	11.1T	3.68	2.298 ± 0.023	1.929	69.60	16.23	23.02	26.23	
Decoder only block sharing	144M	11.17	3.70	2.352 ± 0.029	2.082	67.93	16.13	23.81	26.08	
Factorized Embedding	227 M	9.4T	3.80	2.208 ± 0.006	1.855	70.41	15.92	22.75	26.50	
Factorized & shared embed-	202M	9.17	3.92	2.320 ± 0.010	1.952	68.69	16.33	22.22	26.44	
dings										
Tied encoder/decoder in-	248M	11.1T	3.55	2.192 ± 0.002	1.840	71.70	17.72	24.34	26.49	
put embeddings										
Tied decoder input and out-	248M	11.1T	3.57	2.187 ± 0.007	1.827	74.86	17.74	24.87	26.67	
put embeddings										
Untied embeddings	273M	11.1T	3.58	2.195 ± 0.005	1.834	72.99	17.58	23.28	26.48	
Adaptive input embeddings	204M	9.27	3.55	2.250 ± 0.002	1.899	66.57	16.21	24.07	26.66	
Adaptive softmax	204M	9.27	3.60	2.364 ± 0.005	1.982	72.91	16.67	21.16	25.56	
Adaptive softmax without	223M	10.8T	3.43	2.394 ± 0.003 2.229 ± 0.009	1.914	71.82	17.10	23.02	25.72	
projection	22370	10.84	3.40	2.229 2.0000	1.314	11.04	11.00	20.02	20.12	
Mixture of softmaxes	232M	16.3T	2.24	2.227 ± 0.017	1.821	76.77	17.62	22.75	26.82	
Transparent attention	223M	11.17	3.33	2.181 ± 0.014	1.874	54.31	10.40	21.16	26.80	
Dynamic convolution	257.M	11.8T	2.65	2.403 ± 0.009	2.047	58.30	12.67	21.16	17.03	
Lightweight convolution	224M	10.4T	4.07	2.370 ± 0.010	1.989	63.07	14.86	23.02	24.73	
Evolved Transformer	217M	9.97	3.09	2.220 ± 0.003	1.863	73.67	10.76	24.07	26.58	
Synthesiaer (dense)	224M	11.4T	3.47	2.334 ± 0.021	1.962	61.03	14.27	16.14	26.63	
Synthesizer (dense plus)	243M	12.6T	3.22	2.191 ± 0.010	1.840	73.98	16.96	23.81	26.71	
Synthesizer (dense plus al-	243M	12.6T	3.01	2.180 ± 0.007	1.828	74.25	17.02	23.28	26.61	
pha)										
Synthesizer (factorized)	207M	10.1T	3.94	2.341 ± 0.017	1.968	62.78	15.39	23.55	26.42	
Synthesizer (random)	254M	10.17	4.08	2.326 ± 0.012	2.009	54.27	10.35	19.56	26.44	
Synthesizer (random plus)	292M	12.0T	3.63	2.189 ± 0.004	1.842	73.32	17.04	24.87	26.43	
Synthesizer (random plus	292M	12.0T	3.42	2.186 ± 0.007	1.828	75.24	17.08	24.08	26.39	
alpha)										
Universal Transformer	84M	40.0T	0.88	2.406 ± 0.036	2.053	70.13	14.09	19.05	23.91	
Mixture of experts	648M	11.7T	3.20	2.148 ± 0.006	1.785	74.55	18.13	24.08	26.94	
Switch Transformer	1100M	11.7T	3.18	2.135 ± 0.007	1.758	75.38	18.02	26.19	26.81	
Furnel Transformer	223M	1.97	4.30	2.288 ± 0.008 2.278 ± 0.003	1.918	67.34	16.26	22.75	23.20	
Weighted Transformer	280M	71.0T	0.59	2.378 ± 0.021	1.989	69.04	16.98	23.02	26.30	
Product key memory	-421M	386.6T	0.25	2.155 ± 0.003	1.798	75.16	17.04	23.55	26.73	

Do Transformer Modifications Transfer Across Implementations and Applications?

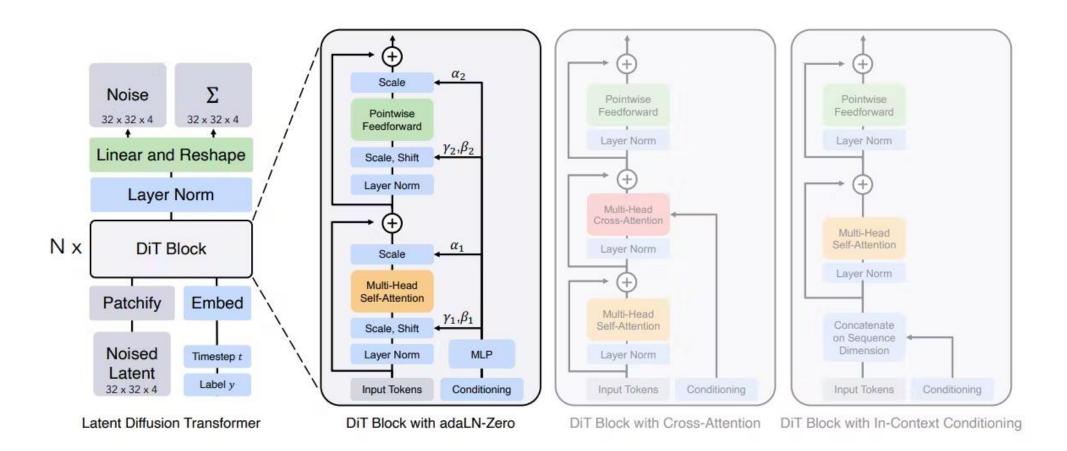
Sharan Narang*	Hyung Won Chung	Yi Tay	William Fedus
${\bf Thibault} \ {\bf Fevry}^\dagger$	$\mathbf{Michael} \; \mathbf{Matena}^{\dagger}$	Karishma Malkan †	Noah Fiedel
Noam Shazeer	${\bf Zhenzhong}{\bf Lan}^\dagger$	Yanqi Zhou	Wei Li
Nan Ding	Jake Marcus	Adam Roberts	${\bf Colin}\; {\bf Raffel}^{\dagger}$

Vision Transformer (ViT)



(Dosovitskiy et al., 2021): An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

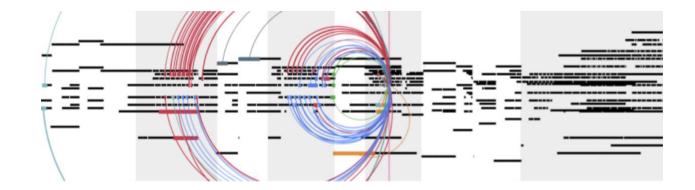
Diffusion Transformer (DiT)



(William Peebles et al., 2022): Scalable Diffusion Models with Transformers.

DiT aims to improve the performance of diffusion models by replacing the commonly used U-Net backbone with a transformer.

Music Transformer



https://magenta.tensorflow.org/music-transformer

(Huang et al., 2018): Music Transformer: Generating Music with Long-Term Structure

Why transformer

• 1.Because transformers are more efficient?

Transformers are shower comparing to LSTM with same amount parameters

Credits from 杨植麟, Recurrent AI

• 1.Because transformers are more efficient?

Transformers are shower comparing to LSTM with same amount parameters

• 2. Because transformers are better on machine translation?

RNNs and CNNs are equally good in machine translations

• 1.Because transformers are more efficient?

Transformers are shower comparing to LSTM with same amount parameters

• 2. Because transformers are better on machine translation?

RNNs and CNNs are equally good in machine translations

• 3. Because transformers use nothing but attention?

So what?

• 1.Because transformers are more efficient?

Transformers are shower comparing to LSTM with same amount parameters

• 2. Because transformers are better on machine translation?

RNNs and CNNs are equally good in machine translations

• 3. Because transformers use nothing but attention?

So what?

• 4. Because transformers learns contextualised word embeddings?

RNN also can learn contextualised word embeddings

- ✤ Capacity: The model has sufficient expressive capabilities
- Optimization: Can optimize and obtain better solutions in a huge expression space
- * Generalization: Better solutions can generalize on test data

"Exploring the Limits of Language Modeling Jozefowicz et al 2016 LSTM-8192-1024, 1.8 billion params, ppl 30.6 LSTM-8192-2048, 3.3 billion params, ppl 32.2 Dai, Yang et al 2016 Transformer-XL Base, 0.46 billion params, ppl 23.5 Transformer-XL Large, 0.8 billion params, ppl 21.8 ppl=perplexity, the lower the better

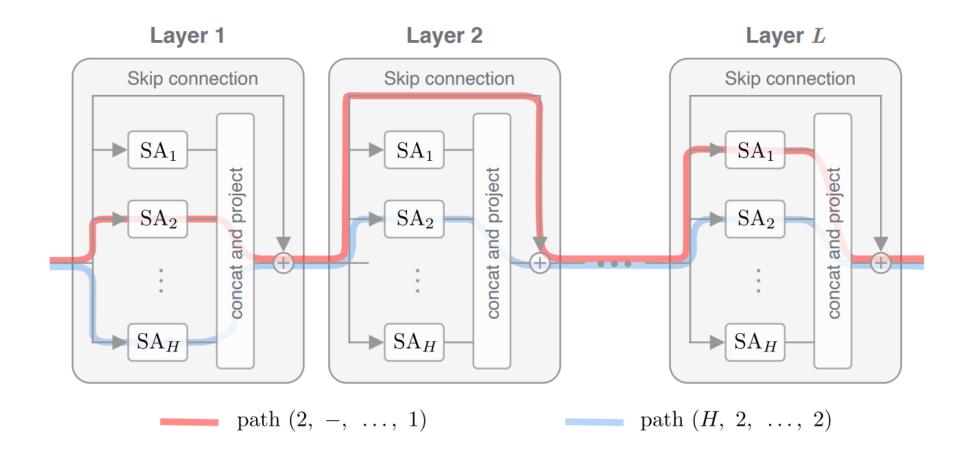
Scalability: Transformers scale much better with more parameters

Deep understanding of transformer An Ablation Study

What if

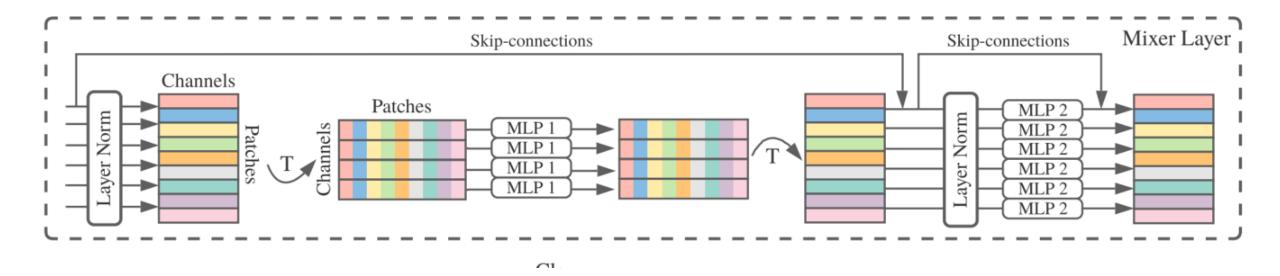
- ✓ removing SAN
- ✓ removing FFN
- ✓ removing PE
- ✓ and many others?

Without FFN, pure SAN



Y Dong, JB Cordonnier, A Loukas. Attention is not all you need: Pure attention loses rank doubly exponentially with depth. https://browse.arxiv.org/pdf/2103.03404.pdf

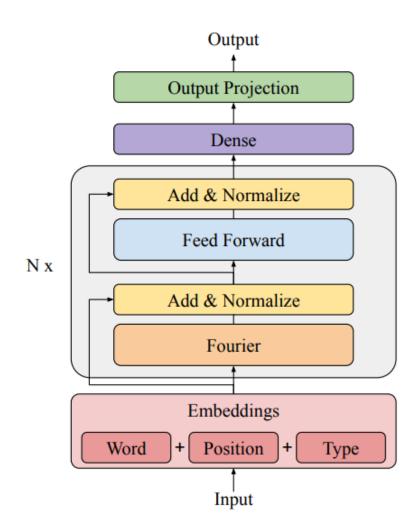
Without SAN, pure FNN



At least it works for computer vision.

Ilya Tolstikhin et.al MLP-Mixer: An all-MLP Architecture for Vision https://browse.arxiv.org/pdf/2105.01601.pdf

Replace SAN with fourier



- Highlight the potential of linear units as a drop-in replacement for the attention mechanism in text classification tasks.
- FNet will be effective as a lightweight

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon. FNet: Mixing Tokens with Fourier Transforms. NAACL 2022

How to place FFN and SAN?

sfsfsfsfsfsfsfsfsfsfsfsfsf

(a) Interleaved Transformer

ssssssfsfsfsfsfsfsfsffffff

(b) Sandwich Transformer

Figure 1: A transformer model (a) is composed of interleaved self-attention (green) and feedforward (purple) sublayers. Our sandwich transformer (b), a reordering of the transformer sublayers, performs better on language modeling. Input flows from left to right.

Model	PPL
fsfsfffsffsfssffsfssfsssffsfs	20.74
s <mark>f</mark> ssffsffffssssfsfffsfsffsfssssf	20.64
fsffss <mark>ffssssff</mark> ssss <mark>ff</mark> sfssfsfffff	20.33
f <mark>sffffffsssfssffsfssffsf</mark> sssff	20.27
f <mark>ssfffffffsfsssfff</mark> ssss <mark>fff</mark> ssss <mark>ff</mark> ss	19.98
sssfssfsfffssfsfsfssffsfsf	19.92
fffsfsssfsffsfsffsffssssffssff	19.69
fffsffssffsssfssfssfffffsfsssf	19.54
sfsfsfsfsfsfsfsfsfsfsfsfsfsfsf	19.13
fsffssfssfffssssfffsssffffsfssf	19.08
sfsffssssffssffffsssffsssf	18.90
sfsfsfsfsfsfsfsfsfsfsfsfsfsfsf	18.83
ssssssffsffsfsffffsfffsfsff	18.83
sffsfsffsfsssffssf	18.77
sssfssffsfssfsffsfffssffsffssf	18.68
fffssssfffsfsssffsfsfsfsff	18.64
sfffsssfsfssfssssf	18.61
ssffssfssssffffffssffsssfsffssff	18.60
fsfssssfsfsfffffsfffsffssffsss	18.55
sfsfsfsfsfsfsfsfsfsfsfsfsfsfsf	18.54
sfsfsfsfsfsfsfsfsfsfsfsfsfsfsf	18.49
fsfssssfsfffssfsffsfsfsffffss	18.38
sfssffsfsfsffssssfffsssfffsffsf	18.28
sfsfsfsfsfsfsfsfsfsfsfsfsfsfsf	18.25
sfsfssfsssffsfsfsfffffssffsfsf	18.19

Ofir Press, Noah A. Smith, Omer Levy. Improving Transformer Models by Reordering their Sublayers. https://browse.arxiv.org/pdf/1911.03864.pdf

What if position embedding is removed?

Table 3: Experiments on GLUE. The evaluation metrics are following the official GLUE benchmark (Wang et al., 2018). The best performance of each task is bold.

	single sentence			sentence pair						
PEs	CoLA acc	SST-2 acc	MNLI acc	MRPC F1	QNLI acc	QQP F1	RTE acc	STS-B spear. cor.	WNLI acc	mean \pm std
BERT without PE	39.0	86.5	80.1	86.2	83.7	86.5	63.0	87.4	33.8	76.6 ± 0.41
fully learnable (BERT-style) APE	60.2	93.0	84.8	89.4	88.7	87.8	65.1	88.6	37.5	82.2 ± 0.30
fixed sin. APE	57.1	92.6	84.3	89.0	88.1	87.5	58.4	86.9	45.1	80.5 ± 0.71
learnable sin. APE	56.0	92.8	84.8	88.7	88.5	87.7	59.1	87.0	40.8	80.6 ± 0.29
fully-learnable RPE	58.9	92.6	84.9	90.5	88.9	88.1	60.8	88.6	50.4	81.7 ± 0.31
fixed sin. RPE	60.4	92.2	84.8	89.5	88.8	88.0	62.9	88.1	45.1	81.8 ± 0.53
learnable sin. RPE	60.3	92.6	85.2	90.3	89.1	88.1	63.5	88.3	49.9	82.2 ± 0.40
fully learnable APE + fully-learnable RPE	59.8	92.8	85.1	89.6	88.6	87.8	62.5	88.3	51.5	81.8 ± 0.17
fully learnable APE + fixed sin. RPE	59.2	92.4	84.8	89.9	88.8	87.9	61.0	88.3	48.2	81.5 ± 0.20
fully learnable APE+ learnable sin. RPE	61.1	92.8	85.2	90.5	89.5	87.9	65.1	88.2	49.6	82.5 ± 0.44
learnable sin. APE + fully-learnable RPE	57.2	92.7	84.8	88.9	88.5	87.8	58.6	88.0	51.3	80.8 ± 0.44
learnable sin. APE + fixed sin. RPE	57.6	92.6	84.5	88.8	88.6	87.6	63.1	87.4	48.7	81.3 ± 0.43
learnable sin. APE + learnable sin. RPE	57.7	92.7	85.0	89.6	88.7	87.8	62.3	87.5	50.1	81.4 ± 0.33

Benyou Wang, Lifeng Shang, Christina Lioma, Xin Jiang, Hao Yang, Qun Liu, Jakob Grue Simonsen. On Position Embeddings in BERT. <u>https://openreview.net/pdf?id=onxoVA9FxMw</u> ICLR 2021.

Improvements for Norm

DeepNet - 1000 layer Transformers

A new normalization function (DEEPNORM) is introduced [replacing it is not Layer Norm! Instead, modify it similarly to:

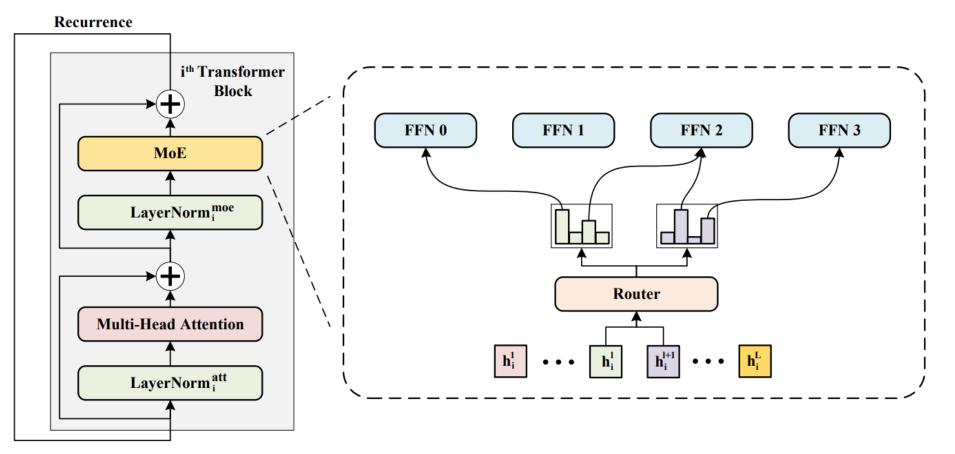
layernorm $(x + f(x)) \rightarrow layernorm(x*alpha + f(x)).$

The proposed method combines the advantages of both schools, namely the good performance of Post-LN and the stable training of Pre-LN, making DEEPNORM the preferred alternative.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, Furu Wei. DeepNet: Scaling Transformers to 1,000 Layers. https://browse.arxiv.org/pdf/2203.00555.pdf

Is the model deeper or wider?

Go Wider Instead of Deeper



- WideNet first compresses trainable parameters along with depth by parameter-sharing across transformer blocks.
- ✤ Each expert requires enough tokens to train.

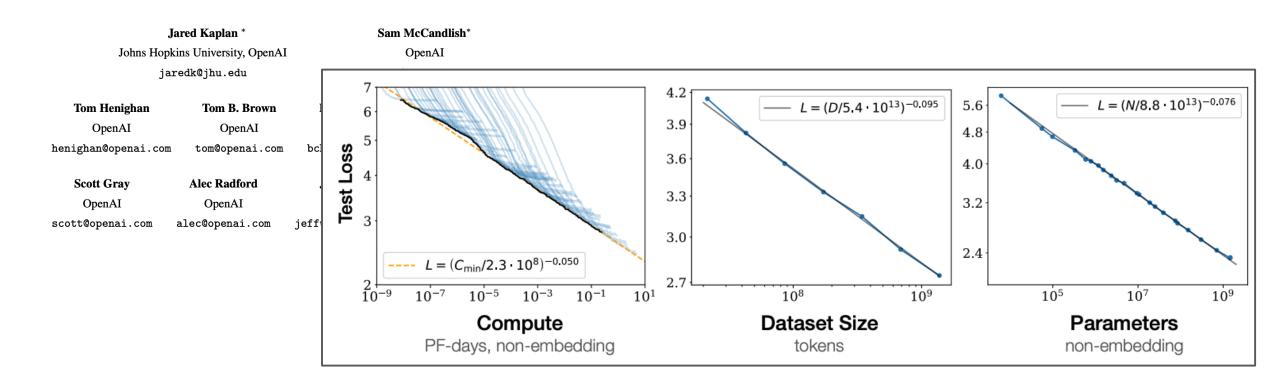
Fuzhao Xue, Ziji Shi, Futao Wei, Yuxuan Lou, Yong Liu, Yang You. Go Wider Instead of Deeper. https://arxiv.org/abs/2107.11817

Scaling law?

Scaling Law for Neural Language Models

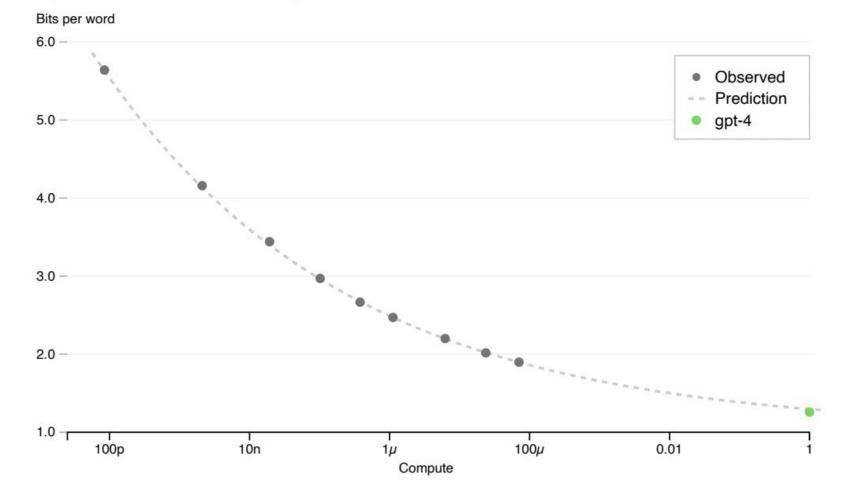
Performance depends strongly on scale! We keep getting better performance as we scale the model, data, and compute up!

Scaling Laws for Neural Language Models



Emergent abilities of large language models (TMLR '22). J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma, D. Zhou, D. Metzler, E. Chi, T. Hashimoto, O. Vinyals, P. Liang, J. Dean, & W. Fedus.

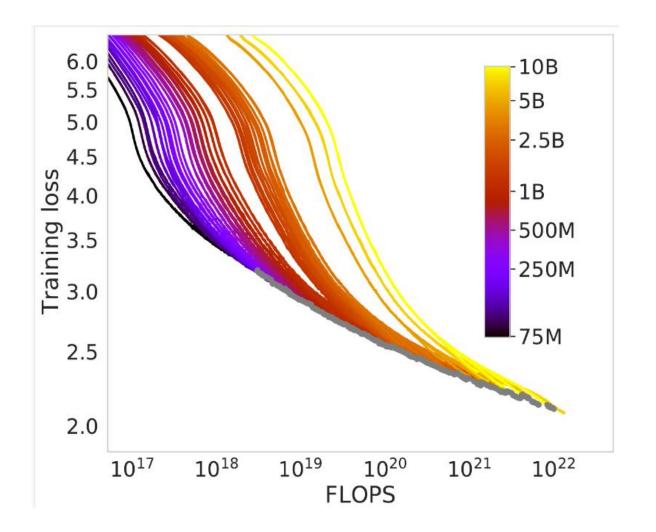
Scaling laws



OpenAI codebase next word prediction

<u>GPT-4 Technical Report</u>, OpenAI (2023)

Challenge to scaling law: Chinchilla's Death

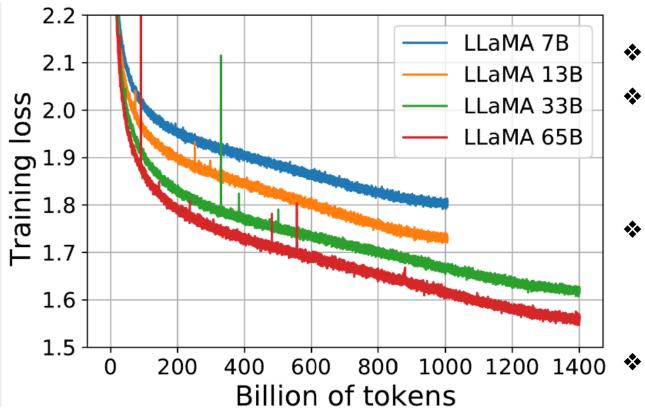


Smaller models eventually reach the limit of their capacity for knowledge, and their learning slows, while that of a **larger model, with a larger capacity, will overtake them** and reach better performance past a given amount of training time.

While estimating how to get the best bang during training, OpenAI & DeepMind attempted to draw the Pareto frontier.

https://espadrine.github.io/blog/posts/chinchilla-s-death.html

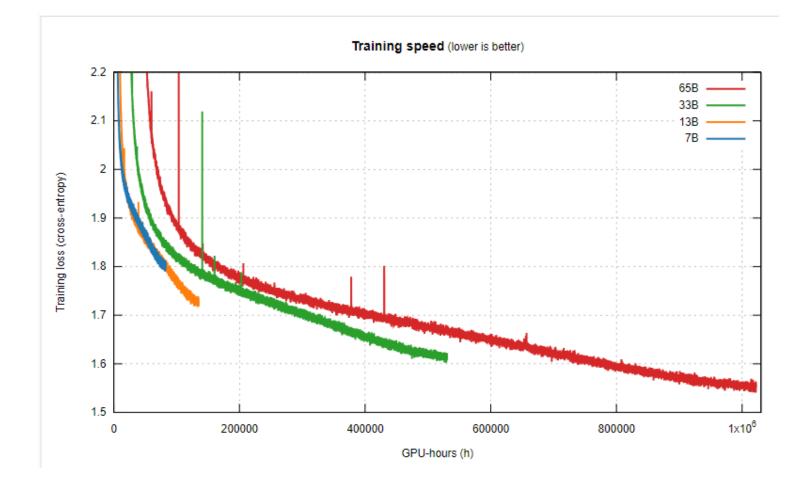
Challenge to scaling law: Chinchilla's Death Can Chinchillas picture a Llama's sights?



- Each curve first plummets in a power law,
 and then seemingly enters a populy linear
- and then seemingly enters a nearly-linear decrease in loss (corresponding to a fairly constant rate of knowledge acquisition).
- At the very tip of the curve, they all break this line by **flattening** slightly.
 - This should consider the cosine LR schedule.

https://espadrine.github.io/blog/posts/chinchilla-s-death.html

Challenge to scaling law: Chinchilla's Death



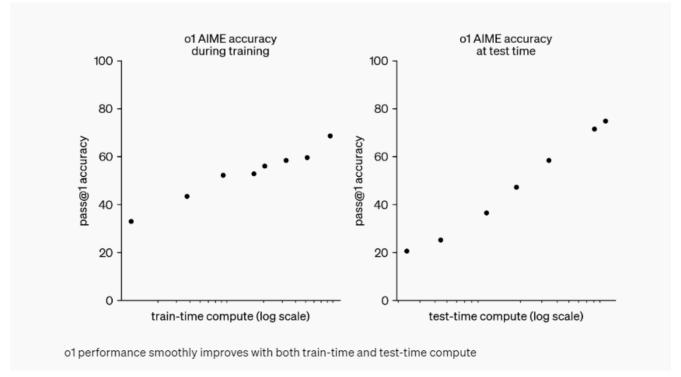
Let's picture instead a race: All those models start at the same time, and we want to know which one crosses the finish line first.

In other words, when throwing a fixed amount of compute at the training, who learns the most in that time?

the 7B enters a near-linear regime, with a steep downward trend, and seems on its way to maybe overpass the 13B again? https://espadrine.github.io/blog/posts/chinchilla-s-death.html

New Scaling law from OpenAI o1

Our **large-scale reinforcement learning** algorithm teaches the model how to think productively using its chain of thought in a highly data-efficient training process. We have found that the performance of o1 consistently improves with **more reinforcement learning** (train-time compute) and with **more time spent thinking** (test-time compute). The constraints on scaling this approach differ substantially from those of LLM pretraining.



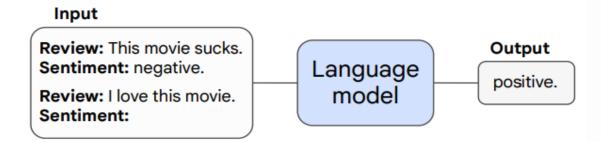
https://openai.com/index/learning-to-reason-with-llms/

Emergent ability?

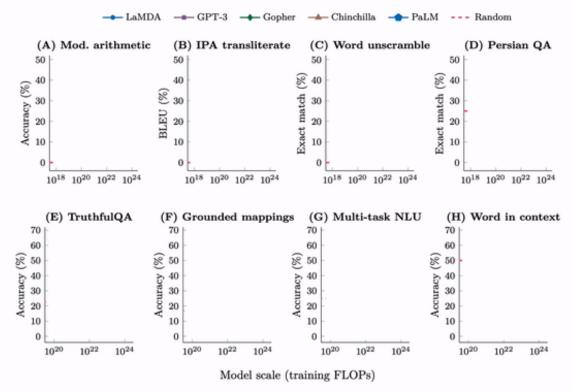
Emergent properties in LLMs:

Some ability of LM is not present in smaller models but is present in larger models

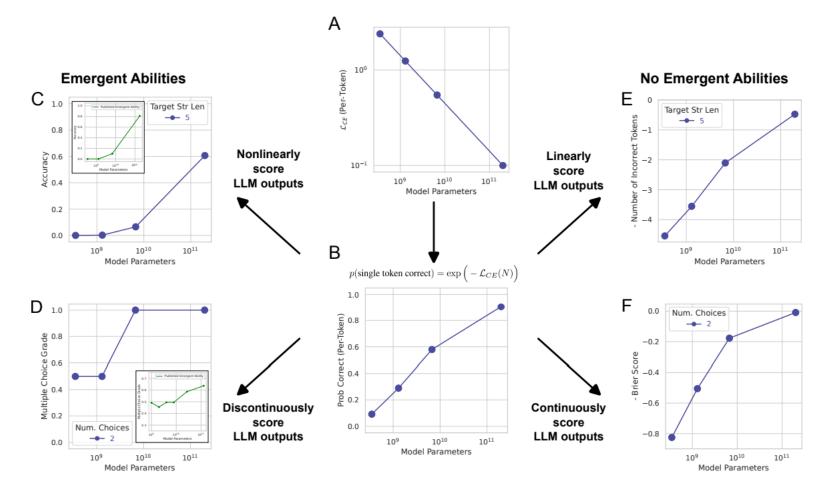
Emergent Capability: Few-shot prompting



> A few-shot prompted task is emergent
 if it achieves random accuracy for small
 models and above-random accuracy for
 large models.



Emergent capabilities may be a consequence of metric choice



It seems that emergent ability of a model only occurs if the measure of per-token error rate of any model is scaled **non-linearly or discontinuously**.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are Emergent Abilities of Large Language Models a Mirage? https://browse.arxiv.org/pdf/2304.15004.pdf

A Quick Reminder

Assignment 1:

Our first assignment has been posted for a while. Please be aware if you still haven't started yet The deadline is Feb. 27th, by the end of the day.

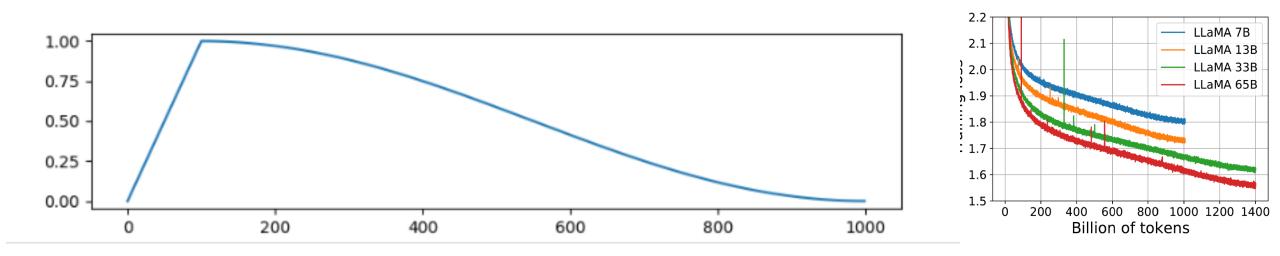
A study

What is new in Qwen 2.5 and DeepSeek V3?

Acknowledgement

- Princeton COS 484: Natural Language Processing. Contextualized Word Embeddings. Fall 2019
- CS447: Natural Language Processing. Language Models. <u>http://courses.engr.illinois.edu/cs447</u>
- <u>http://cs231n.stanford.edu/</u>
- <u>https://medium.com/@gautam.karmakar/summary-seq2seq-model-using-convolutional-neural-network-b1eb100fb4c4</u>
- Transformers and sequence- to-sequence learning. CS 685, Fall 2021. Mohit Iyyer. College of Information and Computer Sciences. University of Massachusetts Amherst. <u>https://people.cs.umass.edu/~miyyer/cs685_f21/slides/05-transformers.pdf</u>
- <u>https://www.digitalocean.com/community/tutorials/deepseek-r1-large-language-model-capabilities</u>

Challenge to scaling law: Chinchilla's Death Can Chinchillas picture a Llama's sights?



The slowdown in learning is an artefact of cosine schedule. The model does not necessarily cease to have the capacity to learn at the same near-linear rate!

https://espadrine.github.io/blog/posts/chinchilla-s-death.html